\hspace{-16}\mathbf{x+\lfloor y \rfloor+\left\{z\right\}=1.1..................(1) }$\\\\ $\mathbf{\lfloor x \rfloor+\left\{y\right\}+z=2.2..................(2)}$\\\\ $\mathbf{\left\{x\right\}+y+\lfloor z \rfloor=3.3..................(2)}$\\\\ Add equation $\mathbf{(1)+(2)+(3)}\;,$ We Get\\\\ $\mathbf{x+\underbrace{\lfloor x \rfloor +\left\{x\right\}}+y+\underbrace{\lfloor y \rfloor +\left\{y\right\}}+z+\underbrace{\lfloor z \rfloor +\left\{z\right\}}=1.1+2.2+3.3}$\\\\ $\mathbf{2x+2y+2z=6.6}$\\\\ $\mathbf{x+y+z=3.3.......................(4)}$\\\\ Now Substrace $\mathbf{(4)-(1)}$\\\\ $\mathbf{\left\{y\right\}+\lfloor z \rfloor =2.2}$\\\\ Means $\mathbf{\left\{y\right\}=0.2\;\;, \lfloor z \rfloor=2}$\\\\ Similarly Substrace $\mathbf{(4)-(2)}$\\\\ $\mathbf{\left\{x\right\}+\lfloor y \rfloor = 1.1}$\\\\ Means $\mathbf{\left\{x\right\}=0.1\;\;, \lfloor y \rfloor=1}$\\\\ Similarly Substrace $\mathbf{(4)-(3)}$\\\\ $\mathbf{\left\{z\right\}+\lfloor x \rfloor = 0.0}$\\\\
\hspace{-16}$Means $\mathbf{\left\{z\right\}=0.0\;\;, \lfloor x \rfloor=0}$\\\\\\ So \begin{Bmatrix} \bold{x =\lfloor x \rfloor +\left\{x\right\}= 0+0.1=0.1} \\\\ \bold{y =\lfloor y \rfloor +\left\{y\right\}=1+0.2=1.2} \\ \\ \bold{z =\lfloor z \rfloor +\left\{z\right\}=2+0.0=2.0} \end{Bmatrix}