ar-ar+1 = constant = a1-a2
so S= a12-a22+a32-a42 + ...
= (a1 - a2) ( a1 + a2 + ... a2n) = (a1- a2) n [ 2a1 + (2n-1) (a2 - a1) ]
if x , y , z > 0
then the value of x/y + y/z + z/x lies in the interval
If am is the m th term of an A.P then a12 - a22 +a32 -a42 +.............+ a2n-12 - a2n2 is equal to
ar-ar+1 = constant = a1-a2
so S= a12-a22+a32-a42 + ...
= (a1 - a2) ( a1 + a2 + ... a2n) = (a1- a2) n [ 2a1 + (2n-1) (a2 - a1) ]