Denominator is an odd function , so the integral is 0.
consider f(x) = [x / pi] + 0.5
f(-x) = [-x /pi] + 0.5 = -1 - [x / pi] + 0.5 = -[x /pi] - 0.5
so, f(-x) = -f(x)
\int_{-2}^{2}{\frac{sin^2x}{[\frac{x}{\pi }]+0.5}}dx
where [.] =GINT
Denominator is an odd function , so the integral is 0.
consider f(x) = [x / pi] + 0.5
f(-x) = [-x /pi] + 0.5 = -1 - [x / pi] + 0.5 = -[x /pi] - 0.5
so, f(-x) = -f(x)