# Recently Active Algebra Questions

• If four squares are chosen random on a chessboard, find the probability that they lie on a diagonal line. ...
replied2013-03-08 00:33:25
• In a test an examinee either guesses or copies or knows the answer to a multiple choice question with 4 choices. The probability that he makes a guess is 1/3 and the probability that he copies it is 1/6 . The probability that ...
replied2013-03-06 10:12:53
• In a multiple choice question there are four alternative answers, of which one or more are correct. a candidate will get marks in the question only if he ticks all the correct answers. The candidate decides to tick the answer ...
replied2013-03-06 08:16:11
• 1)Find the value of \fn_jvn \frac{\sum_{r=0}^{24}\binom{100}{r}\binom{100}{4r+2}}{\sum_{r=1}^{25}\binom{200}{8r-6}} 2)The largest term of the sequence 1/503 , 4/524 , 9/581 , 16/692 ... is 49/1529p Find p? 3)No of solutions o ...
replied2013-03-05 09:42:51
• \hspace{-16}\bf{(1)\;\; \mathbb{F}}$ind$\mathbb{L}$ast$\bf{2}$Digit of$\bf{7^{7^{7^{7}}}}$\\\\\\$\bf{(2)\;\; \mathbb{F}}$ind$\mathbb{R}$emainder When$\bf{2222^{5555}+5555^{2222}}$is Divided by$\bf{7}$. ... replied2013-03-05 05:53:38 • The greatest value of x3y4 if 2x+3y=7 and x, y ≥ 0 ... replied2013-03-05 01:39:51 • 1)[easy] Prove that: \dpi{200} asin(x)+bcos(x)\leq \sqrt{a^{2}+b^{2}} 2)[hard] Prove that for any triangle with sides a,b,c and area A. \inline \dpi{200} a^{2}+b^{2}+c^{2}\geq 4\sqrt{3}A 3)[harder] How should n balls be put i ... replied2013-03-04 22:06:10 • solve (x+3)4+(x+5)4≥4 ... replied2013-03-02 06:08:38 • FIND THE LOCUS OF THE COMPLEX NUMBER FOLLOWING THE RELATIONS arg(z-1)=pi/4 AND |z-2-3i|=2. ... replied2013-03-02 00:57:43 • \hspace{-16}$If $\bf{(x-8).(x-10)=2^y}$ where $\bf{x,y\in \mathbb{Z}}$. Then no. of ordered pairs of $\bf{\left(x,y\right)}$ ...
replied2013-02-28 20:23:06
• \hspace{-16}$How many digits are used in total to write the natural numbers \\\\ from$\bf{1}$to$\bf{100 ^ {1000}.}$... replied2013-02-28 07:57:39 • \hspace{-16}$The no. of positive integer value of $\bf{n}$ for which $\bf{n^2 - 19n + 99}$\\\\ is perfect square. ...
replied2013-02-28 07:41:51
• Remember the formula for the sum of cubes of 1st n naturals..... \frac{n^2(n+1)^2}{4} Remember the formula we learnt in progressions for deriving this? Now derive this using bionomial theorem..... ...
replied2013-02-28 06:38:20
• z has property that |z-5i|=1 & z1 is such that |z1-5|=1 find z1 with the property that |z-z1| is maximum ...
replied2013-02-28 05:09:27
• In how many ways can you put 9 coins of into 2 pockets? Consider the cases as (a) All 9 coins are different (b) all 9 coins are same ...
replied2013-02-28 04:25:32
• if a,b,c,d and p are different real numbers such that (a2+ b2+c2)p2 -2(ab+bc+cd) p +(b2+c2+d2) ≤ 0 then a,b,c and d are in geometric progression ...
replied2013-02-28 04:13:55
• \hspace{-16}$\bf{(A)} No. of ordered pairs$\bf{(n,r)}$which satisfy$\bf{\binom{n}{r}=2013}$\\\\\\ (B) No. of ordered pairs$\bf{(n,r)}$which satisfy$\bf{\binom{n}{r}=2014}$... replied2013-02-27 21:57:02 • Prove that n*(n+1)*(2n+1) is divisible by 6, for any n>0 ... replied2013-02-27 06:42:20 • A and B toss a coin each alternatively.The first person to toss 5 heads wins.Find the chances of A winning if he starts the game? ... replied2013-02-26 19:07:38 • \hspace{-16}$Is there is any Natural no. $\bf{n}$ which end with exactly ........\\\\ $\bf{(i)\;\; 2013-}$ zero,s.\\\\ $\bf{(ii)\; 2014-}$ zero,s.\\\\ $\bf{(iii)\; 2015-}$ zero,s.\\\\ ...
replied2013-02-25 08:02:38
• *Image* ...
replied2013-02-25 04:42:46
• Of 3n+1 objects, n are indistinguishable, and the remaining ones are distinct. Find the number of ways to choose n objects from them. ...
replied2013-02-25 04:23:36
• 2n players are participating in a tennis tournament. Find the number Permutation of pairings for the ﬁrst round ...
replied2013-02-25 03:39:26
• \hspace{-16}$If$\bf{a+b=8}$and$\bf{ab+c+d=23}$and$\bf{ad+bc=28}$and$\bf{cd=12}$.\\\\ Then value of \\\\$\bf{(i)\;\;\;a+b+c+d=}$\\\\$\bf{(ii)\;\;ab+bc+cd+da=}$\\\\$\bf{(iii)\; abcd=}$... replied2013-02-24 23:42:21 • \hspace{-16}$Let $\bf{S = \{1,2,3,4,5\}}$. Then the no. of unordered pairs $\bf{\{A,B\}.}$\\\\\ of Subsets of $\bf{S}$ such that\\\\ $\bf{(i)\;\;\;\; A\cap B=\phi}$. Where $\bf{A\neq B}$\\\\ $\bf{(ii)\;\;\;\; A\cap B=S}$. Whe ...
replied2013-02-24 23:29:20
• find the minimum value of th modulus of the sum of all 6 trigo functions.. ...
replied2013-02-24 19:14:01
• \hspace{-16}$Total no. of positive divisers of$\bf{226894500}$which are is in the form of\\\\$\bf{(i)\;\;(4n+1)\;\;,}$Where$\bf{n\in \mathbb{N}}$\\\\$\bf{(ii)\;\;(4n+2)\;\;,}$Where$\bf{n\in \mathbb{N}}$\\\\$\bf{(iii) ...
replied2013-02-24 05:26:05
• \hspace{-16}$Minimum value of$\bf{n\in\mathbb{N},}$whic has ......\\\\$\bf{(i)\;\; 16-}$divisers.\\\\$\bf{(ii)\;\; 19-}$divisers.\\\\$\bf{(iii)\;\; 24-}$divisers.\\\\$\bf{(iv)\;\; 25-}$divisers.\\\\$\bf{(v)\;\; 26- ...
replied2013-02-24 04:21:57
• \hspace{-16}$The no. of divisers of the form$\bf{12\lambda+6(\lambda\in \mathbb{N})}$of the no.$\bf{25200}\$ ...
replied2013-02-24 03:55:38
• How many 7 digit integers can be formed whose digit sums to 10 and has the digits 1,2 and 3 only (a)66 (b)55 (c)77 (d)88 ...
replied2013-02-24 03:36:36