yup............
substitue n as 1.....
ull get either b or c
then subsitute n as 2
thts all
yup............
substitue n as 1.....
ull get either b or c
then subsitute n as 2
thts all
The integration method works here
(1+x)^n=\sum{^nC_rx^r}
\int (1+x)^n=\sum\int{^nC_rx^r}
(1+x)^{n+1}=\sum\int{^nC_rx^{r+1}/r+1}
divide by x and integrate again.. you are done..
This is a way to find
\sum{}r \begin{pmatrix}n\\ r\end{pmatrix}
can you do that? or say
\sum{}r^2 \begin{pmatrix}n\\ r\end{pmatrix}
or
\sum{}1/r \begin{pmatrix}n\\ r\end{pmatrix}