I fwfennfkdkjrenjvrnnnnnnnnnnnnnnnnnnnnnnnjnrgkjrenkrenjgkjnrekjgrewngkjnrewkjlkremgkre
- Ersin This is just an attempt tp put something onUpvote·0· Reply ·2021-03-04 00:28:52
how to do this q using congruences
find the remainder wen 32n+2-8n-9 is divided by 64?
i know the procedure by binomial
I fwfennfkdkjrenjvrnnnnnnnnnnnnnnnnnnnnnnnjnrgkjrenkrenjgkjnrekjgrewngkjnrewkjlkremgkre
Any natural number n is one of the forms 8k , k∈N, 8k+1, 8k+2, 8k+3, 8k+4, 8k+5, 8k+6, 8k+7, k∈ N ∪{0}.
Let S(n)=9n+1 -8n-9. Let' s prove it 64|S(n), where n is any of the mentioned forms, which means that 64|S(n) for any natural number n.
Let' s first notice that it is
91 ≡ 9 (mod 64); 92=81 , 81 ≡ 17 (mod 64), 92 ≡ 17 (mod 64),
93≡ 9×17 (mod 64); 9×17 =153 , 153 ≡ 25 (mod 64), 93 ≡ 25 (mod 64),
94 ≡ 9×25 (mod 64); 9×25 =225 , 225 ≡33 (mod 64), 94 ≡ 33 (mod 64),
95 ≡ 9×33 (mod 64); 9×33 =297 , 297 ≡41 (mod 64), 95 ≡ 41 (mod 64),
96 ≡ 9×41 (mod 64); 9×41 =369 , 369 ≡49 (mod 64), 96 ≡ 49 (mod 64),
97 ≡ 9×49 (mod 64); 9×49 =441 , 441 ≡57 (mod 64), 57≡ -7 (mod 64), 97 ≡ -7 (mod 64),
98 ≡ -7×9 (mod 64); -7×9 =-63 , -63 ≡1 (mod 64), 98 ≡ 1 (mod 64).
We have
1° n=8k, k∈N∪{0}. Then S(8k)=9×98k-64k-9,
S(8k)≡9×98k-9 (mod 64), 9×98k-9≡9×1-9 (mod 64),
S(8k)≡0 (mod 64) (from 98≡1 (mod 64) follows 98k≡ 1 (mod 64)),
2° n=8k+1, k∈N∪{0}. S(8k+1)=9×98k+1-64k-8-9,
S(8k+1)=92×98k-64k-17, S(8k+1)≡92×98k-17 (mod 64),
92×98k-17≡17×1-17 (mod 64), S(8k+1)≡0 (mod 64),
3° n=8k+2, k∈N∪{0}. S(8k+2)=9×98k+2-64k-16-9,
S(8k+2)=93×98k-64k-25, S(8k+2)≡93×98k-25 (mod 64),
93×98k-25≡25×1-25 (mod 64), S(8k+2)≡0 (mod 64),
4° n=8k+3, k∈N∪{0}. S(8k+3)=9×98k+3-64k-24-9,
S(8k+3)=94×98k-64k-33, S(8k+3)≡94×98k-33 (mod 64),
94×98k-33≡33×1-33 (mod 64), S(8k+3)≡0 (mod 64),
5° n=8k+4, k∈N∪{0}. S(8k+4)=9×98k+4-64k-32-9,
S(8k+4)=95×98k-64k-41, S(8k+4)≡95×98k-41 (mod 64),
95×98k-41≡41×1-41 (mod 64), S(8k+4)≡0 (mod 64),
6° n=8k+5, k∈N∪{0}. S(8k+5)=9×98k+5-64k-40-9,
S(8k+5)=96×98k-64k-49, S(8k+5)≡96×98k-49 (mod 64),
96×98k-49≡49×1-49 (mod 64), S(8k+5)≡0 (mod 64),
7° n=8k+6, k∈N∪{0}. S(8k+6)=9×98k+6-64k-48-9,
S(8k+6)=97×98k-64k-57, S(8k+6)≡97×98k-57(mod 64),
97×98k-57≡-7×1-57 (mod 64), S(8k+6)≡0 (mod 64),
8° n=8k+7, k∈N∪{0}. S(8k+7)=9×98k+7-64k-56-9,
S(8k+7)=98×98k-64k-65, S(8k+7)≡98×98k-65(mod 64),
98×98k-65≡1×1-65 (mod 64), S(8k+7)≡0 (mod 64).
Therfor S(8k+j)≡0 (mod 64), j∈{0,1,2,3,4,5,6,7} whence it follows S(n)≡0 (mod 64), for any natural number n.
The task was done by Dr. Dženis PuÄić at State University of Novi Pazar, Serbia.