=\sum_{r=0}^{k}{(-1)^{r}.2^{k-r}.^{n}C_{r}.^{n-r}C_{k-r}}
=\sum_{r=0}^{k}{(-1)^{r}.2^{k-r}}.\frac{n!}{r!(n-r)!}.\frac{(n-r)!}{(k-r)!(n-k)!}
=\sum_{r=0}^{k}{(-1)^{r}.2^{k-r}}.\frac{n!}{k!(n-k)!}.\frac{k!}{r!(k-r)!}
=\sum_{r=0}^{k}{(-1)^{r}.2^{k-r}}.^{n}C_{k}.^{k}C_{r}
=2^{k}.^{n}C_{k}\left\{ \sum_{r=0}^{k}(-1)^{r}.\frac{1}{2^{r}}.^{k}C_{r} \right\}
=2^{k}.^{n}C_{k}\left(1-\frac{1}{2} \right) ^{k}
=^{n}C_{k}