limx-->0( g(x)cosx-g(0))/sinx
itz 0/0 form ........
thus diff we get
limx-->0 [g'(x)cosx-g(x)sinx]/cosx
sincef(x)=g(x)sinx
f'(x)=g'(x)sinx+g(x)cosx
f''(x)=g''(x)sinx+2g'(x0cosx-g(x)sinx
f''(0)=0
thus that limx-->0 is =0
statmnt 1 is true
satmnt2 says............f'(x)=g'(x)sinx+g(x)cosx
f'(0)=g(0)
stsnt 2 is nt d corrct xpannaitio of stsmnt 1
thus ansewr is b)