Book: Inegalitati; Authors:L.Panaitopol,V. Bandila,M.Lascu

LET \left(a_{in} \right)_{n\geq 1} i\epsilon \left\{1,2,3,.,p \right\} sequences of strictly real pozitive numbers. Prove that:

( \sum_{k=1}^{n} \frac{1}{ \prod_{i=1}^{p} a_{ik} } ) ( \sum_{k=1}^{n}( \sum_{i=1}^{p} a_{ik} )^{p} ) \geq p^{p} \cdot n^{2}

6 Answers

1
playpower94 ·

[12] [17] [17] [15] [15]

1
Akand ·

I just cant imagine wats wrong wid u guys heheheeh [3][3][3].....

1
ith_power ·

Not every horrible looking problem has long answer.
convert all \Sigma to \prod by AM-GM. you get the answer in just 2 lines. :D

11
Anirudh Narayanan ·

11
Subash ·

@ani[3]

9
Celestine preetham ·

yeah this is simple problem as ith power said

(Σaik)p≥ ppπaik AM ≥GM

so it reduces to
given≥pp (Σ(1/Πaik)Σπaik )
now ΣΠaik ≥n(p√ΠΠaik) .............1
and ΣΠ1/aik≥n(p√ΠΠ1/aik) ..............2

both 1 and 2 from AM GM inequality

multiply 1 and 2
ie (Σ(1/Πaik)Σπaik )≥n2

now put this in org eq
given ≥ppn2

Your Answer

Close [X]