the first one...
eL... where L = \lim_{x\rightarrow0}{{\left( \frac{1^{x}+2^{x}+3^{x}+.....+n^{x}-n}{nx}\right)}}}
= ln(n!)n......
I think i made some mistake . pls tell me.
1) Find \lim_{x\rightarrow0}{{\left( \frac{1^{x}+2^{x}+3^{x}+.....+n^{x}}{n}\right)^{1/x}}}
2) Find \lim_{n\rightarrow(infinity)}\frac{1^{k}+2^{k}+3^{k}+........+n^{k}}{n^{k+1}}
the first one...
eL... where L = \lim_{x\rightarrow0}{{\left( \frac{1^{x}+2^{x}+3^{x}+.....+n^{x}-n}{nx}\right)}}}
= ln(n!)n......
I think i made some mistake . pls tell me.
3)Find \lim_{n\rightarrow(infinity)}\frac{\left( n!^{1/n}\right)}{n}
@debo-
No, u cant say that.....coz n→∞ here.
& u don't know the value of k.
So, u cant say anything like that........!!